

DATASHEET

TALON3408TM

4-port, Gigabit Ethernet PCI-Express NIC with full TCP/IP acceleration

LeWiz's Talon3408[™] network interface card (NIC) is designed for performance. It enables the system to transfer at full network wire-rate 4Gbps in each direction while significantly reducing the burden of network processing and data movement from the host CPU. It's ideal for the server and storage applications where the high port count, large data size, and high number of clients are needed but still maintain a low system cost and power consumption.

The Talon3408[™] TCP/IP accelerated NIC offers 4, 1Gbps Ethernet ports with full TCP/IP offload engine (TOE) on a single high-performance, 4-lane PCI-Express (PCI-E) bus slot. Taking advantage of LeWiz's advanced TCP/IP offload engine (TOE) architecture, the Talon3408 TOE NIC maintains the system performance even in the most severe loading environment of high data rate or large concurrent client counts. In severely loaded applications, the non-TOE NIC would hog the system resources and hampers the system's response time. A simple test of 4 clients running at full rate would bring such server with 2 dual-core CPUs down to its knees. In contrast, the Talon3408 TOE NIC performs very well in such environment. It frees up the system resources and avoid over burden the CPUs thus maintains the system response time. From the user's view, the user would not experience server slowdown even during the most severe time.

LeWiz's Talon3408[™] TOE NIC is ideal for applications such as iSCSI, NAS storage, video serving, and proxy systems. Its 4-ports can be used to connect to multiple networks, performs mirroring functions, fail-over protection or bonded together to enable high-speed large pipe transfer. Unlike the dedicated NIC, LeWiz's TOE NIC can support a unified traffic environment where iSCSI, RDMA, HTTP, UDP/TCP traffic and other traffic types can co-exist on the same network link. This further reduces the system and network cost for the users.

The Talon3408[™] TOE NIC has many performance features. It contains a x4 PCI-express host interface to enable fast data transfer data to/from the host. On-board, the LeWiz NIC has multiple, dedicated buses and dedicated TOE chips for the 4 ports to enable simultaneous data transfer and TCP/IP processing per direction without sharing. On-board dedicated Ethernet MAC on a per port basis, large on-chip FIFOs, and multiple DMA channels allow fetching/storing of descriptors, payload and other data structures independently. The board has full checksum offload, full TCP/IP offload capability. It offloads the data path problems from the host CPUs as well as TCP/IP connection setup and teardown. For intensive environment, these features keep the system humming in severe time, and free up system resources for advanced protocols such as iSCSI.

The Talon3408 TOE NIC is well tested with various application software, system platforms and OS mixes. Best of all, LeWiz's device drivers are loadable, do not require recompilation or patching of kernels, thus very user friendly and easy to use.

For OEMs and developers, LeWiz created specialized APIs and other features for its TOE NIC to enable the OEMs to develop differentiated products. The Talon3408[™] TOE NIC is a member of LeWiz's family of advanced NIC products from 1Gbps to 10Gbps for the PCI-express bus. Customers using the Talon3408[™] TOE NIC can upgrade to higher port count or higher speed easily. See LeWiz's Talon NIC PCI-express products at <u>www.LeWiz.com</u>.

TALON3408TM

General performance features	
Each Ethernet port has a dedicated MAC	Optimizes for high performance with
with its own register set, memory	independent transmit and receive simultaneously
buffers, DMA engines	on a per port basis.
TCP/UDP/IP checksum offload	Free the CPU from performing checksum
	functions on a packet to packet basis
Statistic collection for management and	Useful for diagnostic and performance
RMON on a per Ethernet port basis	optimization of the network
Independent DMA engines for transmit	Mitigating instantaneous receive bandwidth and
and receive	eliminating transmit underruns.
Dedicated DMA engines for fetching	Maximizes the host bus bandwidth
transmit and receive descriptors	
4x64KByte configurable transmit and	Large on-board stores - maximizes the network
receive data FIFOs on board	efficiency
Caches up to 64 descriptors per fetch	Maximizes bus bandwidth
Interrupt coalescing and throttling	Optimizes system CPU usage. Minimizes CPU
	thrashing
Dedicated on-board buses	Minimizes arbitration overhead; maximizes high
	speed data transfer

Full TCP/IP offload features	
TCP session set up and tear	Handles SYN, FIN three way handshakes and complete
down	session setup, tear down without CPU intervention
TCP segmentation	Automatically segments large data block into the smaller
	block size required by the network
TCP reassembly	Re-assembles segmented packets into ordered, non-
	redundant information without CPU intervention
256,000 concurrent sessions	High number of TCP sessions suitable for even very large
	client base applications
Data re-transmission	Resends failed packets automatically without CPU
	intervention
Data re-ordering	Re-orders data packets received out of order & eliminates
	redundant data without CPU intervention
TCP Timer handling and	Manages 7 TCP timers per TCP session without CPU
management	intervention
TCP Option handling	Handling TCP protocol's TCP options such as TCP window
	scaling, updating without CPU intervention.
TCP buffer management	Work with the OS to manage TCP buffer allocation and
	freeing.

TALON3408TM

Detailed Specifications:

Product part number		
Talon3408	4-port Gigabit Ethernet, copper,	
	x4 PCI-express bus	
System	interface	
Compliant PCI-Expess Base		
Specification 1.1		
4 lanes PCI-express (PCI-E)	4 lane PCI-E physical but also	
	works in x1 and x4 logical buses	
	with x8 or x16 connectors	
Each lane capable of	High speed – up to 20Gbps for 4	
2.5Gbps, full duplex	lanes PCI-E system bus	
Supports 1 Virtual Channel		
Supports 256 byte max	Large data block transfer	
payload size	optimizes bus efficiency	
Supports PCI-E advanced		
error logging		
Supports ECRC checking and	Enhance data integrity, system	
generation	reliability	
Data loading from serial	Useful for OEMs requiring	
EEPROM	customized configurable product	
	information	
Each MAC has its own	Host system can control and	
register set	examine each MAC	
	independently	
Software support		
Loadable driver for Linux	No need to recompile the driver	
	or the OS	
None interference with	Existing software applications	
existing applications	would run as is without	
	modification or recompiling.	
Redhat Linux AS 4.0, 4.3	Full offload acceleration, both	
Redhat Linux ES 4	64 and 32 bit version	
Novell SuSE LES 9.0,	Full offload acceleration, both	
SuSE Professional 9.3	64 and 32 bit version	
Fedora Core 4, 3	Full offload acceleration, both	
	64 and 32 bit version	
IPv4 and IPv6	Fully compatible with IPv4 and IPv6	

External network interfaces		
Quad 1Gbps Ethernet ports per	Great for storage back-up, data	
board	mirroring, or multi-zone	
	networking using only 1 board	
	and 1 system PCI-E slot	
100 meter Cat-5 UTP copper		
Standard RJ45 copper	Low cost NIC, standard copper	
connection (1 for each port,	cable and external switching	
1000Base-T, 100Base-TX,	equipments.	
10Base-T compliant)		
Networking features		
Port fail-over capability	Network redundancy to enhance	
	network system reliability –	
	continue network operating even	
	during network down time.	
Port bonding (or port	Up to 16 times the port	
teaming)	throughput rate.	
Others		
Expansion FLASH,	Can act as a remote boot ROM	
512KByte per Ethernet port	or special purpose function	
(optional)	code/data storage.	
Physical size		
Length x Width	6.6 x 4.2 inches	
Operating spec		
Uses standard voltages from		
PCI-express connector	<u></u>	
Operating temperature	<u>0-55°C</u>	
Operating humidity	85% at +55 °C	
Recommended system requirements		
(The following is the minimum recommended system		
requirement. The board can work in many different		
environments including the configuration specified below. This		
is not a required environment for the board to function.)		
x86 or other CPUs with 1GHz	For example: Xeon, Opteron,	
speed, 32-bit or better	XScale, PowerPC, MIPS, or	
	others	
1GByte of system memory	x4 PCI-express slot or better	

Information in this document is provided solely to enable system implementers to use LeWiz products. There are no express or implied copyright or patent licenses granted hereunder based on the information in this document. These information are preliminary and subject to change without notice. LeWiz makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LeWiz assume any liability arising out of the application or use of any of its products. LeWiz specifically disclaims any and all liability, including without limitation consequential or incidental damages. Each customer is responsible for validating for each customer application by customer's technical experts. LeWiz's products are not designed, intended or authorized for use in life support equipment or any application where a failure can cause any bodily injury. Customers using LeWiz's product in any unintended or unauthorized application agree to indemnify and hold LeWiz and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that LeWiz was negligent regarding the design or manufacture of the part.

LeWiz Communications, Inc.

1376 N. 4th Street, Suite 300 San Jose, CA 95112 USA Phone: 408-452-9800 ext 109 Fax: 408-452-9805 <u>info@LeWiz.com</u> www.LeWiz.com

© Copyright 2006 All rights Reserved